ChE-403 Problem Set 1.4

Week 4

Problem 1

Consider the decomposition of N_2O_5 :

$$2N_2O_5 \Rightarrow 4NO_2 + O_2$$

Experimentally, we observe that the rate of oxygen formation is consistent with the following expression:

$$\frac{d[O_2]}{dt} = k[N_2O_5]$$

With *k* being a constant.

Is this compatible with the following suggested mechanism?

$$2(N_2O_5 \underset{k_1}{\overset{k_1}{\Longleftrightarrow}} NO_2 + NO_3)$$

$$NO_2 + NO_3 \overset{k_2}{\Longrightarrow} NO_2 + O_2 + NO$$

$$\frac{NO + NO_3 \overset{k_3}{\Longrightarrow} 2NO_2}{2N_2O_5 \Longrightarrow 4NO_2 + O_2}$$

Solution:

$$\frac{d[O_2]}{dt} = k_2[NO_2][NO_3]$$

From reaction we have an equilibrium:

$$\begin{split} k_1[N_2O_5] &= k_{-1}[NO_2][NO_3] \\ \to K &= \frac{k_1}{k_{-1}} = \frac{[NO_2][NO_3]}{[N_2O_5]} \to [NO_2][NO_3] = K[N_2O_5] \\ \to \frac{d[O_2]}{dt} &= k_2K[N_2O_5] = k[N_2O_5] \end{split}$$

With: $k = k_2 K$

So, Yes! This mechanism is compatible with the mathematical expression given above.

Problem 2

Consider the decomposition of ozone catalyzed by *Cl*:

$$Cl + O_3 \xrightarrow{k_1} O_2 + ClO$$

$$\frac{ClO + O \xrightarrow{k_2} O_2 + Cl}{O + O_3 \Rightarrow 2O_2}$$

Can you use the steady state approximation on reactive intermediate *ClO* to show that the rate of ozone disappearance can be written as:

$$\frac{d[O_3]}{dt} = -\frac{k_1 k_2[O][O_3][Cl]_0}{k_2[O] + k_1[O_3]}$$

Where $[Cl]_0$ is the Cl loaded/present in the system at t=0.

Solution:

The steady state approximation allows us to set the rate of change of reactive intermediates during the reaction to zero. Let's do that for *ClO*:

$$\frac{d[ClO]}{dt} = 0 = k_1[Cl][O_3] - k_2[ClO][O] *$$

$$[ClO] = \frac{k_1[Cl][O_3]}{k_2[O]}$$

Let's do a balance on Cl: $[Cl]_0 = [Cl] + [ClO]$

And substitute [Cl]:

$$[ClO] = \frac{k_1[O_3]}{k_2[O]} ([Cl]_0 - [ClO])$$

$$[ClO]\left(1 + \frac{k_1[O_3]}{k_2[O]}\right) = \frac{k_1[O_3]}{k_2[O]}[Cl]_0$$

$$[ClO] = \frac{k_1[O_3][Cl]_0}{k_2[O] + k_1[O_3]}$$

The rate of ozone decomposition is:

$$\frac{d[O_3]}{dt} = -k_1[Cl][O_3]$$

But from * we know that $k_1[\operatorname{Cl}][O_3] = k_2[\operatorname{ClO}][O]$ Side note:

This equality perfectly illustrates that with the SSA, we have:
$$\frac{d\Phi(t)}{dt} = \frac{1}{\nu_1} \frac{d\mathbf{n}_1}{dt} = \dots = \frac{1}{\nu_i} \frac{d\mathbf{n}_i}{dt}$$

Therefore we can write:

$$\frac{d[O_3]}{dt} = -\frac{k_1 k_2 [O][O_3][Cl]_0}{k_2 [O] + k_1 [O_3]}$$